non-abelian, soluble, monomial
Aliases: Q8⋊2A4, C23⋊2A4, 2+ 1+4⋊2C3, C2.2(C22⋊A4), SmallGroup(96,204)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — 2+ 1+4 — C23⋊A4 |
C1 — C2 — C23 — 2+ 1+4 — C23⋊A4 |
2+ 1+4 — C23⋊A4 |
Generators and relations for C23⋊A4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e2=f3=1, faf-1=ab=ba, eae=ac=ca, ad=da, dbd=bc=cb, be=eb, fbf-1=a, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >
Character table of C23⋊A4
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 6A | 6B | |
size | 1 | 1 | 6 | 6 | 6 | 16 | 16 | 6 | 6 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 3 | 3 | -1 | -1 | 3 | 0 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from A4 |
ρ5 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | -1 | 3 | 0 | 0 | orthogonal lifted from A4 |
ρ6 | 3 | 3 | -1 | 3 | -1 | 0 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from A4 |
ρ7 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 3 | -1 | 0 | 0 | orthogonal lifted from A4 |
ρ8 | 3 | 3 | 3 | -1 | -1 | 0 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from A4 |
ρ9 | 4 | -4 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | -1 | -1 | orthogonal faithful |
ρ10 | 4 | -4 | 0 | 0 | 0 | ζ32 | ζ3 | 0 | 0 | ζ65 | ζ6 | complex faithful |
ρ11 | 4 | -4 | 0 | 0 | 0 | ζ3 | ζ32 | 0 | 0 | ζ6 | ζ65 | complex faithful |
(1 5)(2 8)(3 4)(6 7)
(1 3)(2 6)(4 5)(7 8)
(1 2)(3 6)(4 7)(5 8)
(3 6)(4 7)
(4 7)(5 8)
(3 4 5)(6 7 8)
G:=sub<Sym(8)| (1,5)(2,8)(3,4)(6,7), (1,3)(2,6)(4,5)(7,8), (1,2)(3,6)(4,7)(5,8), (3,6)(4,7), (4,7)(5,8), (3,4,5)(6,7,8)>;
G:=Group( (1,5)(2,8)(3,4)(6,7), (1,3)(2,6)(4,5)(7,8), (1,2)(3,6)(4,7)(5,8), (3,6)(4,7), (4,7)(5,8), (3,4,5)(6,7,8) );
G=PermutationGroup([[(1,5),(2,8),(3,4),(6,7)], [(1,3),(2,6),(4,5),(7,8)], [(1,2),(3,6),(4,7),(5,8)], [(3,6),(4,7)], [(4,7),(5,8)], [(3,4,5),(6,7,8)]])
G:=TransitiveGroup(8,32);
(5 9)(6 7)(10 15)(12 14)(16 19)(18 21)
(4 8)(6 7)(10 15)(11 13)(16 19)(17 20)
(1 23)(2 24)(3 22)(4 8)(5 9)(6 7)(10 15)(11 13)(12 14)(16 19)(17 20)(18 21)
(1 8)(2 20)(3 11)(4 23)(5 15)(6 18)(7 21)(9 10)(12 19)(13 22)(14 16)(17 24)
(1 12)(2 9)(3 21)(4 16)(5 24)(6 13)(7 11)(8 19)(10 20)(14 23)(15 17)(18 22)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
G:=sub<Sym(24)| (5,9)(6,7)(10,15)(12,14)(16,19)(18,21), (4,8)(6,7)(10,15)(11,13)(16,19)(17,20), (1,23)(2,24)(3,22)(4,8)(5,9)(6,7)(10,15)(11,13)(12,14)(16,19)(17,20)(18,21), (1,8)(2,20)(3,11)(4,23)(5,15)(6,18)(7,21)(9,10)(12,19)(13,22)(14,16)(17,24), (1,12)(2,9)(3,21)(4,16)(5,24)(6,13)(7,11)(8,19)(10,20)(14,23)(15,17)(18,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)>;
G:=Group( (5,9)(6,7)(10,15)(12,14)(16,19)(18,21), (4,8)(6,7)(10,15)(11,13)(16,19)(17,20), (1,23)(2,24)(3,22)(4,8)(5,9)(6,7)(10,15)(11,13)(12,14)(16,19)(17,20)(18,21), (1,8)(2,20)(3,11)(4,23)(5,15)(6,18)(7,21)(9,10)(12,19)(13,22)(14,16)(17,24), (1,12)(2,9)(3,21)(4,16)(5,24)(6,13)(7,11)(8,19)(10,20)(14,23)(15,17)(18,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) );
G=PermutationGroup([[(5,9),(6,7),(10,15),(12,14),(16,19),(18,21)], [(4,8),(6,7),(10,15),(11,13),(16,19),(17,20)], [(1,23),(2,24),(3,22),(4,8),(5,9),(6,7),(10,15),(11,13),(12,14),(16,19),(17,20),(18,21)], [(1,8),(2,20),(3,11),(4,23),(5,15),(6,18),(7,21),(9,10),(12,19),(13,22),(14,16),(17,24)], [(1,12),(2,9),(3,21),(4,16),(5,24),(6,13),(7,11),(8,19),(10,20),(14,23),(15,17),(18,22)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)]])
G:=TransitiveGroup(24,97);
(2 10)(3 11)(4 8)(5 20)(6 18)(7 21)(9 17)(13 22)(15 24)(16 19)
(1 12)(3 11)(4 16)(5 9)(6 21)(7 18)(8 19)(13 22)(14 23)(17 20)
(1 23)(2 24)(3 22)(4 8)(5 9)(6 7)(10 15)(11 13)(12 14)(16 19)(17 20)(18 21)
(2 9)(3 7)(5 24)(6 22)(10 17)(11 21)(12 14)(13 18)(15 20)(16 19)
(1 8)(3 7)(4 23)(6 22)(10 15)(11 18)(12 19)(13 21)(14 16)(17 20)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
G:=sub<Sym(24)| (2,10)(3,11)(4,8)(5,20)(6,18)(7,21)(9,17)(13,22)(15,24)(16,19), (1,12)(3,11)(4,16)(5,9)(6,21)(7,18)(8,19)(13,22)(14,23)(17,20), (1,23)(2,24)(3,22)(4,8)(5,9)(6,7)(10,15)(11,13)(12,14)(16,19)(17,20)(18,21), (2,9)(3,7)(5,24)(6,22)(10,17)(11,21)(12,14)(13,18)(15,20)(16,19), (1,8)(3,7)(4,23)(6,22)(10,15)(11,18)(12,19)(13,21)(14,16)(17,20), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)>;
G:=Group( (2,10)(3,11)(4,8)(5,20)(6,18)(7,21)(9,17)(13,22)(15,24)(16,19), (1,12)(3,11)(4,16)(5,9)(6,21)(7,18)(8,19)(13,22)(14,23)(17,20), (1,23)(2,24)(3,22)(4,8)(5,9)(6,7)(10,15)(11,13)(12,14)(16,19)(17,20)(18,21), (2,9)(3,7)(5,24)(6,22)(10,17)(11,21)(12,14)(13,18)(15,20)(16,19), (1,8)(3,7)(4,23)(6,22)(10,15)(11,18)(12,19)(13,21)(14,16)(17,20), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) );
G=PermutationGroup([[(2,10),(3,11),(4,8),(5,20),(6,18),(7,21),(9,17),(13,22),(15,24),(16,19)], [(1,12),(3,11),(4,16),(5,9),(6,21),(7,18),(8,19),(13,22),(14,23),(17,20)], [(1,23),(2,24),(3,22),(4,8),(5,9),(6,7),(10,15),(11,13),(12,14),(16,19),(17,20),(18,21)], [(2,9),(3,7),(5,24),(6,22),(10,17),(11,21),(12,14),(13,18),(15,20),(16,19)], [(1,8),(3,7),(4,23),(6,22),(10,15),(11,18),(12,19),(13,21),(14,16),(17,20)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)]])
G:=TransitiveGroup(24,149);
C23⋊A4 is a maximal subgroup of
C2≀A4 2+ 1+4.C6 C23.S4 Q8.S4 C23⋊S4 Q8⋊2S4 2+ 1+4.3C6 Ω4+ (𝔽3)
C23⋊A4 is a maximal quotient of
C24.7A4 Q8⋊SL2(𝔽3) C24⋊5A4 2+ 1+4⋊2C9
action | f(x) | Disc(f) |
---|---|---|
8T32 | x8+2x7-27x6-93x5-3x4+272x3+263x2+35x-2 | 212·34·532·614·3892 |
Matrix representation of C23⋊A4 ►in GL4(ℤ) generated by
1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
G:=sub<GL(4,Integers())| [1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,-1],[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1],[-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;
C23⋊A4 in GAP, Magma, Sage, TeX
C_2^3\rtimes A_4
% in TeX
G:=Group("C2^3:A4");
// GroupNames label
G:=SmallGroup(96,204);
// by ID
G=gap.SmallGroup(96,204);
# by ID
G:=PCGroup([6,-3,-2,2,-2,2,-2,73,164,579,255,1084,730]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^2=f^3=1,f*a*f^-1=a*b=b*a,e*a*e=a*c=c*a,a*d=d*a,d*b*d=b*c=c*b,b*e=e*b,f*b*f^-1=a,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations
Export
Subgroup lattice of C23⋊A4 in TeX
Character table of C23⋊A4 in TeX